출처 : https://wikidocs.net/22886 RNN은 hidden layer에서 활성화 함수를 통해 나온 결과값을 output layer로 보내면서, 다시 hidden layer에도 보내 다음 계산의 입력으로 사용한다. cell은 이전의 값을 기억하는 역할을 수행하기도 한다. 이전 타임 스텝에서 나온 결과값을 기억하고 있다가 해당 타임 스텝의 입력으로 사용한다. 위 그림은 입력 벡터의 차원이 4, hidden state가 2, output이 2인 상태를 시각화한 것이다. RNN은 입력과 출력의 길이를 다르게 설정할 수 있다. one-to-many는 하나의 입력으로 여러개의 output을 낼 수 있다. 이는 하나의 이미지 입력에 대해 다양한 이미지의 제목을 출력하는 경우 등이 있다. many-..
출처 : https://repository.kihasa.re.kr/bitstream/201002/32608/1/%EA%B8%B0%EA%B3%84%ED%95%99%EC%8A%B5%28Machine%20Learning%29%20%EA%B8%B0%EB%B0%98%20%EC%9D%B4%EC%83%81%20%ED%83%90%EC%A7%80%28Anomaly%20Detection%29%20%EA%B8%B0%EB%B2%95%20%EC%97%B0%EA%B5%AC-%20%EB%B3%B4%EA%B1%B4%EC%82%AC%ED%9A%8C%20%EB%B6%84%EC%95%BC%EB%A5%BC%20%EC%A4%91%EC%8B%AC%EC%9C%BC%EB%A1%9C.pdf 1. 이상탐지 개념 및 특성 anomaly는 nomal의 ..
- Total
- Today
- Yesterday
- 이상탐지
- one-to-many
- 단순선형회귀
- automotive ethernet
- 논문 잘 쓰는법
- CAN-FD
- cuckoo
- SVM
- 차량용 이더넷
- AVB
- 차량 네트워크
- 회귀
- 크로스 엔트로피
- 로지스틱회귀
- Ethernet
- many-to-one
- automotive
- many-to-many
- porks
- 딥러닝
- json2html
- PCA
- SOME/IP
- HTML
- AVTP
- 머신러닝
- Python
- 케라스
- AE
- problem statement
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |