
import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras import optimizers x = np.array([-50, -40, -30, -20, -10, -5, 0, 5, 10, 20, 30, 40, 50]) y = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) # 숫자 10부터 1 model = Sequential() model.add(Dense(1, input_dim=1, activation='sigmoid')) sgd = ..

케라스는 텐서플로우보다 쉽게 구현할 수 있다. 텐서플로우는 모델을 직접 하나하나 설정해줘야 하지만 케라스는 메소드가 사용자 친화적으로 개발되어 있어 사용하기엔 편하다. 케라스의 구현 과정은 먼저 Sequential로 모델을 만들고 add로 입력과 출력 벡터와 같은 필요한 정보를 추가해간다. import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras import optimizers x = [1,2,3,4,5,6,7,8,9] #공부 시간 y = [11,22,33,44,53,66,7..
- Total
- Today
- Yesterday
- Ethernet
- Python
- PCA
- 논문 잘 쓰는법
- 이상탐지
- 회귀
- 머신러닝
- HTML
- AVB
- many-to-one
- 딥러닝
- cuckoo
- json2html
- CAN-FD
- AVTP
- many-to-many
- 로지스틱회귀
- 케라스
- AE
- 차량용 이더넷
- SVM
- 차량 네트워크
- 크로스 엔트로피
- SOME/IP
- one-to-many
- porks
- problem statement
- automotive
- automotive ethernet
- 단순선형회귀
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |