케라스는 텐서플로우보다 쉽게 구현할 수 있다. 텐서플로우는 모델을 직접 하나하나 설정해줘야 하지만 케라스는 메소드가 사용자 친화적으로 개발되어 있어 사용하기엔 편하다. 케라스의 구현 과정은 먼저 Sequential로 모델을 만들고 add로 입력과 출력 벡터와 같은 필요한 정보를 추가해간다. import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras import optimizers x = [1,2,3,4,5,6,7,8,9] #공부 시간 y = [11,22,33,44,53,66,7..
텐서플로우로 앞서 설명한 단순 선형 회귀를 구현한다. 케라스로 구현해도 좋지만 텐서플로우 먼저 해봄 먼저 경사 하강법에 필요한 미분을 먼저 구현한다. import tensorflow as tf w = tf.Variable(2.) #변수 w에 2를 넣는다 def f(w): y = w**2 z = 2*y + 5 return z with tf.GradientTape() as tape: z = f(w) gradients = tape.gradient(z,[w]) print(gradients) 방정식 f(w)를 구현한다. 이 방정식은 w의 cost값 변화에 대한 그래프이다. tape.gradient(z,[w])는 타겟(z)에 대한 w의 미분을 계산해주는 메소드이다. y = w**2을 dy = dx*2*w 미분식을 ..
- Total
- Today
- Yesterday
- CAN-FD
- 차량용 이더넷
- json2html
- HTML
- 논문 잘 쓰는법
- 이상탐지
- Ethernet
- 크로스 엔트로피
- 머신러닝
- 딥러닝
- Python
- AE
- problem statement
- SVM
- automotive ethernet
- 차량 네트워크
- 회귀
- porks
- AVTP
- one-to-many
- AVB
- many-to-one
- 단순선형회귀
- SOME/IP
- cuckoo
- many-to-many
- 로지스틱회귀
- 케라스
- automotive
- PCA
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |