티스토리 뷰

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras import optimizers

x = np.array([-50, -40, -30, -20, -10, -5, 0, 5, 10, 20, 30, 40, 50])
y = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) # 숫자 10부터 1

model = Sequential()
model.add(Dense(1, input_dim=1, activation='sigmoid'))

sgd = optimizers.SGD(lr=0.01)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['binary_accuracy'])

model.fit(x, y, epochs=200)

plt.plot(x, model.predict(x), 'b', x,y, 'k.')

케라스는 간단하게 activation과 손실함수, 메트릭스만 잘 설정해주면 된다.

 

예측값이 예상과 다르게 나오는데 초기 가중치 설정에 문제가 있는것 같다.

공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2024/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
글 보관함